Study of miRNA and circular RNA Role and Mechanism in Synaptic Plasticity and the Pathogenesis of Schizophrenia

> Ebrahim Mahmoudi BSc; MSc

Doctor of Philosophy (Medical Genetics) University of Newcastle, Australia

May 2019



## DECLARATION

#### **Statement of Originality**

I hereby certify that the work embodied in the thesis is my own work, conducted under normal supervision. The thesis contains no material which has been accepted, or is being examined, for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made. I give consent to the final version of my thesis being made available worldwide when deposited in the University's Digital Repository, subject to the provisions of the Copyright Act 1968 and any approved embargo.

#### Statement of Collaboration

I hereby certify that the work embodied in this thesis has been done in collaboration with other researchers, or carried out in other institutions. I have included as part of the thesis a statement clearly outlining the extent of collaboration, with whom and under what auspices.

#### **Statement of Authorship**

I hereby certify that the work embodied in this thesis contains published papers of which I am a joint author. I have included as part of the thesis a written statement, endorsed by my supervisor, attesting to my contribution to the joint publications.

#### **Thesis by Publication**

I hereby certify that this thesis is submitted in the form of a series of published papers of which I am a joint author. I have included as part of the thesis a written statement from each co-author; and endorsed by the Faculty Assistant Dean (Research Training), attesting to my contribution to the joint publications.

28/05/2019

Ebrahim Mahmoudi

Date

### ACKNOWLEDGEMENT

I would like to acknowledge my research supervisor, Professor Murray Cairns for providing me the opportunity to pursue my scientific dreams. His valuable support, guidance and encouragement throughout my research is very much appreciated. He taught me confidence and gave me freedom to plan and develop this dissertation. My thanks also to my co-supervisor Dr Chantel Fitzsimmons for providing both scientific advices and the moral support that made me feel comfortable in a new country.

I would also like to give my special thanks to my colleagues in the Molecular Neurobiology lab for their contributions; importantly I must thank my fellow student Michael Geaghan for his unending assistance and Joshua Atkins for his kind friendship.

Last but not the least, I would like to appreciate my parents Mohammad Reza and Shokat and my brothers and sisters for their love and supports through this research work. I could not have made this without them.

# TABLE OF CONTENT

| DECLARATION                                                                                                                          | II                         |
|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| ACKNOWLEDGEMENT                                                                                                                      | III                        |
| TABLE OF CONTENT                                                                                                                     | IV                         |
| LIST OF ABBREVIATIONS                                                                                                                | VI                         |
| ABSTRACT                                                                                                                             | VIII                       |
| CHAPTER ONE                                                                                                                          | 1                          |
| Introduction<br>Background<br>Rationale<br>Hypotheses and Aims<br>Thesis overview<br>List of Publications Included as Part of Thesis | 1<br>2<br>3<br>4<br>6<br>9 |
| Conference Presentations Arising From This Thesis                                                                                    | 10                         |
| CHAPTER TWO                                                                                                                          | 11                         |
| <i>Circular RNA literature review</i><br>Statement of Contribution                                                                   | 11<br>                     |
| CHAPTER THREE                                                                                                                        | 29                         |
| A review of miR-137 biology<br>Statement of Contribution                                                                             | 29<br>                     |
| CHAPTER FOUR                                                                                                                         | 43                         |
| MIR137 VNTR association with schizophrenia and brain morphology<br>Statement of Contribution                                         | 43<br>44                   |
| CHAPTER FIVE                                                                                                                         | 61                         |
| Comprehensive analysis of circRNA expression in aging rat<br>Statement of Contribution                                               | 61<br>62                   |
| CHAPTER SIX                                                                                                                          | 75                         |
| <i>CircRNA expression and potential function in neuronal activation</i>                                                              | 75<br>76                   |
| CHAPTER SEVEN                                                                                                                        | 102                        |
| <i>CircRNA alteration in prefrontals cortex in schizophrenia</i><br>Statement of Contribution                                        | 102<br>103                 |
| CHAPTER EIGHT                                                                                                                        | 116                        |
| <i>Thesis discussion</i><br>Introduction                                                                                             | <b> 116</b><br>117         |

| Cognitive and neuroanatomical significance genetic variation in <i>MIR137</i> in schizophren | nia117 |
|----------------------------------------------------------------------------------------------|--------|
| Comprehensive catalog of circRNA in development and aging                                    |        |
| CircRNA profile and potential function in neuronal excitation                                | 120    |
| Conclusion and future directions                                                             |        |
| APPENDIX I                                                                                   | 125    |
| Supplementary Data for Chapter 4                                                             | 125    |
| APPENDIX II                                                                                  |        |
| Supplementary Data for Chapter 5                                                             |        |
| APPENDIX III                                                                                 | 139    |
| Supplementary Data for Chapter 6                                                             | 139    |
| APPENDIX IV                                                                                  |        |
| Supplementary Data for Chapter 7                                                             |        |
| References                                                                                   |        |

## LIST OF ABBREVIATIONS

| ADAR1     | RNA-specific adenosine deaminase 1                  |
|-----------|-----------------------------------------------------|
| AD        | Alzheimer's disease                                 |
| AGO       | Argonaute                                           |
| ALB       | albumin                                             |
| Alu       | Arthrobacter luteus                                 |
| ANRIL     | antisense noncoding RNA in the INK4 locus           |
| ARC       | apoptosis repressor with CARD domain                |
| CDK2      | cyclin-dependent kinase 2                           |
| CDR1as    | cerebellar degeneration-related protein 1 antisense |
| ceRNA     | competitive endogenous RNA                          |
| circRNAs  | circular RNA                                        |
| CSPP1     | centrosome spindle pole-associated protein 1        |
| E2F1      | E2F Transcription Factor 1                          |
| ECM       | extracellular matrix                                |
| ElciRNA   | exon-intron circular RNA                            |
| EMT       | epithelial-mesenchymal transition                   |
| ESCC      | esophageal squamous cell carcinoma                  |
| EXOC6B    | Exocyst Complex Component 6B                        |
| FAK       | focal adhesion kinase                               |
| FBXW7     | F-box and WD repeat domain containing 7             |
| FOXO3     | forkhead box O3                                     |
| HEK 293T  | human embryonic kidney 293 T antigene               |
| НСС       | hepatocellular carcinoma                            |
| HDAC2     | histone deacetylase 2                               |
| HIF-1     | hypoxia-inducible factor-1                          |
| Homer1b/c | homer scaffold protein 1                            |

| HRCR   | heart-related circRNA                        |
|--------|----------------------------------------------|
| ICAM1  | intercellular adhesion molecule 1            |
| ID-1   | inhibitor of DNA binding 1                   |
| IGF2BP | insulin-like growth factor 2 binding protein |
| LncRNA | long noncoding RNA                           |
| MBL    | muscleblind                                  |
| miRNA  | microRNA                                     |
| MMP-13 | matrix metalloproteinase-13                  |
| mRNA   | messenger RNA                                |
| MYRIP  | myosin viia and rab interacting protein      |
| OGD/R  | oxygen-glucose deprivation/reoxygenation     |
| PABP   | Polyadenylate-binding protein                |
| PAK1   | p21-activated kinase 1                       |
| PAX6   | paired box 6                                 |
| PD     | Parkinson's disease                          |
| PrPSc  | particles composed of scrapie prion protein  |
| PWMD   | periventricular white matter damage          |
| QKI    | quaking                                      |
| RBPs   | RNA binding proteins                         |
| RIMS2  | regulating synaptic membrane exocytosis 2    |
| rRNA   | ribosomal RNA                                |
| TNF    | tumor necrosis factor                        |
| VEGF   | vascular endothelial growth factor           |
| ΥΑΡ    | yes-associated protein 1                     |

#### ABSTRACT

Schizophrenia is a severe psychiatric disorder attributed to neurodevelopmental changes in connectivity and neurotransmission. While the acute psychotic symptoms usually respond to antipsychotic treatment, the chronic negative and cognitive symptoms are less responsive and represent a major unmet need in psychiatry. With a greater understanding of the molecular basis of the disorder, especially the debilitating cognitive symptoms it should be possible to refine the treatment options and improve the outcome for millions of people. With heritability around 80%, genetics has the potential to achieve important new insights into the biology of the disorder. One of the most interesting candidates to emerge from genome wide association studies is *MIR137*, a gene encoding the microRNA miR-137 whose expression seems essential for neural processes and brain development. As this gene encodes a small non-coding RNA, most of the functionally significant variation is likely to modify transcription and this is supported by postmortem analysis with reduced expression from the risk allele. One of these in close proximity to the miR-137 encoding segment is a 15-bp Variable Number Tandem Repeat (VNTR) (rs58335419). To investigate possible regulatory role of this variant in disease associated changes in cognitive and neuroanatomical features, DNA sequencing was performed on a cohort of schizophrenia and non-psychiatric controls with respect to their neurocognitive and neuroimaging phenotypes established by a battery of cognitive testing and magnetic resonance imaging. The results revealed VNTR was associated with cognitive performance, with the 4-repeat variant enriched in the cognitive deficit subtype of schizophrenia. Surface-based morphometry of imaging data also revealed that the VNTR carriers have significantly thinner grey matter in the left inferior temporal gyrus, deeper right mid-cingulate, and deeper right postcentral sulci relative to non-carrier individuals. These findings suggest that MIR137 VNTR has biological function in the brain development and etiology of schizophrenia, particularly in relation to cognitive symptoms.

There is recent evidence to suggest that miRNA expression, more broadly, is important for brain function and synaptic plasticity, and is implicated in schizophrenia. The expression of these molecules is dynamically regulated by environmental exposures, including those associated with psychiatric disorders. Their function can also be modulated by another class of noncoding RNAs, known as circular RNA (circRNA). These transcripts, which are highly enriched in the brain, contain binding sites for miRNA, enabling them to act as endogenous competitors. To establish a more comprehensive model of gene regulatory networks in the neuronal biology, we profiled the expression of circRNA and analyzed their differential expression in neuronal development and aging, neuronal excitation, and in the pathophysiology of schizophrenia using RNA sequencing. Interestingly, the brain showed the highest level of enrichment and expression change during aging with an increased trend detected throughout the life span of the rats. Bioinformatic analysis of the circRNA-miRNA interaction indicated that the age-associated circRNAs might be involved in ageing processes by regulating mRNAs expression through sponging miRNAs.

The analysis of circRNA regulation in neuronal depolarization revealed a significant alteration in circRNA abundance which coincided with a change in miRNA and mRNA abundance, suggesting a circRNA-mediated gene regulation mechanism in the cellular response to neural activity. This was supported by both *in silico* and functional analysis suggesting that circular transcripts have the capacity to impact mRNA expression through interaction with common miRNAs. Finally, exploration of circRNA in neuropsychiatric disorder of schizophrenia revealed a substantial depletion of these transcripts in the disorder. A significant enrichment of neural functions and neurological disorders was observed for the differentially expressed circRNAs host genes in gene set analysis. Many of the depleted circRNAs have the potential to sequester miRNAs that were previously implicated in the neuropathology of schizophrenia, potentially exacerbating the functional impact of their dysregulation via posttranscriptional gene silencing.

In summary, the data presented in this thesis provide evidence of miRNA and circRNA association with neuronal development and neuronal activity, and their alteration in the pathogenesis of schizophrenia.